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The coefficients in power series in the variable time that describe relaxation in 
a cooperative system can be calculated using a combinatorial approach where 
one considers how many ways one can introduce a given number of properly 
defined events in a system. The coefficients obtained in this manner can be 
related to the equilibrium virial coefficients for a mixture. If one assumes rapid 
internal equilibration, the relaxation process can be expressed completely in 
terms of the viral coefficients for a mixture with at most one solute particle, or, 
in some cases, just the virial coefficients for a single-component system. Thus, 
equilibrium virial coefficients can give useful information about the time evolution 
of processes in cooperative systems. 

KEY WORDS: Cooperative relaxation; time power series; virial series; 
kinetic Ising model. 

1. I N T R O D U C T I O N  

Recently (1'2) extensive exact power series in the time have been obta ined for 

the cooperative b inding  of particles to a one-dimensional  lattice using 

matrix techniques to determine the coefficients in the series. In  the present 
work we consider the general quest ion of the relat ion of the coefficients in 

a time power series to the coefficients in equi l ibr ium activity (Mayer)  
series. We begin with a general description of the series. We will use the 

language of cooperative adsorpt ion  of particles to a lattice surface as a 
specific example; the general approach applies to any cooperative system, 

not  just  discrete space lattice models. 
Let p be a row vector the components  of which represent the probabi-  

lities of various particle configurations.  We consider time processes that  
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can be described by the first-order interconversion of the various particle 
configurations, that is, the dynamics is described by 

dp/dt = - p W  ( 1.1 ) 

where W is the appropriate matrix of rate constants. The nth derivative of 
p evaluated at t = 0 is 

dnp/dt n = ( -  1) n p(0)W" (1.2) 

Let v + be a column vector whose general element is the number of 
particles in the nth lattice configuration. Then one has the general relation 
for the average density 

p(t) = p(t). v +/N (1.3) 

where N is the total number of lattice sites. Expressing p(t) as a power 
series in the time 

p( t )=  ~ pC")t~/n! (1.4) 
rt=O 

and using (1.2) and (1.3), one has 

pC.~ = N - 1 ( _  1)" p(0)W"v + (1.5) 

This is the approach c1'2) that we have used previously to obtain the coeffi- 
cients pC-) for cooperative adsorption to a one-dimensional lattice. 

Now pC,) in (1.5) has the form of a sum over products of rate 
constants; if k is a general rate constant, then pC,,) is a sum over terms of 
the type k" (through the W" term). Specifically, with {o-} representing a 
particular sequence of rate constants, 

pC,)= Z sgn{a} ~o{a} f i  ki{a} (1.6) 
{o} i:1 

where sgn{a} is +1, depending on {a}, and a~{a} is a weight factor 
arising from the occupation numbers in the vector v + and any degeneracy 
factors in W. 

Thus, one can think of pen) as representing a sum over all ways to 
place n events on the lattice (an event being represented by a rate 
parameter). Thus, our approach is to calculate the coefficients pen) in the 
same manner that one calculates virial coefficients for equilibrium 
problems. In particular, if one is given the grand partition function for a 
lattice gas 

Z = ~  Q(n, N)z n (1.7) 
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where z is the activity and Q(n, N) is the canonical partition function for 
placing n particles on a lattice of N sites, the density is given by 

1 c ~ l n ~  = 
P - N  ~lnz  (1.8) 

or  

p= ~ nbnz ~ (1.9) 

where the b~ are the coefficients in the Mayer activity series for the pressure 

p/kT= ~ b,z ~ (1.10) 
n 

which can be converted to the standard virial series for the pressure, or vice 
versa ,  

p / k T = ~  B~p" (1.11) 
n 

Now in general (3) Q(n, N) can be written as a power series in N, 

Q(n, N) = Nqj(n) + ... (1.12) 

The b,, turn out (~) to be simply the part of Q(n, N) linear in N, i.e., 

bn=ql (1.13) 

We will show that there is a similar construction possible for p(t), that is, 
the p(n) of (1.5) can be written as the linear part of the appropriate partition 
function-like quantity. 

In the next section we will illustrate the combinatorial approach to the 
calculation of the coefficients p(n~ in (1.6), that is, we will enumerate the 
number of ways of arranging n events. This will then be followed by a more 
general treatment of the combinatorics in terms of partition function-like 
quantities. 

2. COMBINATORICS OF KINETICS 

2.1, Irreversible Binding in Hard-Particle Systems 

In Eq. (1.5) we showed that p(n) involves the sum of terms of the form 
k n, that is, products of rate constants for n events. We must now be more 
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precise about what an event is. To be concrete, we take the simplest 
example, the reaction 

A k-A~B (2.1) 

which has the rate equations 

dA/d t  = - k A  

dB/dt  = k A  

A ( t  --- 0) = 1 (2.2) 

B(t = - 0 ) = 0  (2.3) 

Equations (2.2)-(2.3) have the simple solutions 

A( t )  = e - k t  = 1 - k t  + (kt)2/2! . . . .  

B ( t ) = l - e  k , = k t _ ( k t ) 2 / 2 ! +  . . .  

(2.4) 

(2.5) 

As a concrete model, we will interpret (2.1) as the irreversible addition of 
a particle to a vacant site (i.e., an adsorption model where the particle 
comes from a reservoir at constant activity). Thus we write 

0 k , 1 (2.6) 

where now A is "0" and B is ' f ' ;  loss of A represents the binding of a 
particle at an empty site, while B is simply the probability that the site is 
occupied. 

In a small interval of time At, A and B change as follows: 

A ( t  + A t )  = A ( t )  - k A t  (2.7) 

B(t  + At )  =- B( t )  + k A t  (2.8) 

From (2.7), (2.8) we can identify two processes: A either remains the same 
with probability A ( t ) - k  At, or A changes to B, the addition of a particle 
from a reservoir in our model, with probability k At. We will refer to the 
process whereby A remains unchanged as a pause. Our two events are thus 

Event I: add a particle 
(2.9) 

Event II: pause 

Referring to (2.7), (2.8), we see that we can associate the following kinetic 
parameters with the appropriate events: 

(I) addition of a particle: + k  
(2.10) 

(II) p a u s e : - k  
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Thus, one can have n events which can vary in kind from being all 
particles added, all pauses, or any mixture of the two. Thus, we are led to 
the combinatorial question of how many ways one can arrange the addition 
of m particles and ( n -  m) pauses onto the lattice and to the consideration 
of the analog of the Mayer coefficients for a two-component mixture, the 
two components being the two kinds of events in (2.9). We will use this 
idea to rederive the series in (2.4), (2.5). Of course, the ultimate point is 
that the same procedure can be used when there is interaction between the 
particles (and pauses !) and hence can be used to treat cooperative relaxation. 

We will use the above ideas to treat a lattice of N sites. We introduce 
the generating function for n events 

~n = ~ km(-k)~-mr '' E ~{ m ,n }  (2.11) 
m = 0  {m,n} 

where {m, n } indicates a specific sequence of n events containing the addition 
of m particles and (n-m) pauses; Q{m, n} is a combinatorial factor that 
gives the number of ways one can arrange m particles and ( n - m )  pauses. 
Each particle contributes a factor k, while each pause contributes a factor 
( - k ) .  The quantity ~ is an activitylike parameter that simply counts the 
number of particles. Writing the average number of sites occupied at time 
t as a series 

(M(t)) = Ant/n. (2.12) 
n = 0  

then from our previous discussion we make the identification 

A,={ScP~ = k "  ~, m ( - 1 )  " - m y .  Q{m,n} (2.13) 

The average density per site is then 

p(t) = N-I ~ M(t) ) (2.14) 

As mentioned earlier, one finds that the Q are in general finite polynomials 
in N, i.e., 

Q{m, n} = ~ qj{m, n}U j (2.15) 
j = l  

Since p(t) is an intensive quantity, it must be that the contributions of the 
N j terms for j >  1 in (2.15) cancel in (2.13). Defining the analog of a Mayer 
coefficient 

b{m, n} = ql {m, n} (2.15a) 
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one has 

p(")=k" ~ m ( - 1 )  "-m Z b{m,n} (2.16) 
m = 0  {m,n} 

To illustrate the use of (2.16), we will treat a lattice of N sites where 
each site can undergo the reaction 0 ~ 1 as illustrated in (2.6) independent 
of the state of occupation of any of the other sites. [The solution is, of 
course, p(t)=B(t), with B(t) given in (2.5).] First we will treat a single 
site, i.e., N = 1. The possible events are outlines in Fig. 1. Since there is only 
one site, one has (recall that {m, n} indicates n events, m of which are the 
addition of particles) 

b{m,n}=O for m > l  

b{1, n} = (1)"= 1 for m =  1 
(2.17) 

Using (2.17) in (2.16) gives the result of (2.5) for B(t)=p(t). 
Now we take a lattice of N sites and we derive the same result. We will 

use a linear lattice, since that is easier to draw; since the sites are independent, 
the geometry of the lattice is immaterial. The possible events through n = 2 
are shown in Fig. 2, where the Q{m, n} are indicated explicitly. The 

Event Number: 

0 I) 

1 (k) 1 0 (-k) 

2 (-k 2) 1 o (k2) 

3 (k 3) 1 O (-i< 3 ) 

Fig. 1. Illustration of the possible sequence of events for a single site with the irreversible 
reaction 0 ~  1. The addition of a particle is shown by the heavy arrows with the rate 
parameter k; pauses (the state remaining 0) are indicated with thin arrows and rate parameter 
- k .  The net product of rate constants leading to a particular state is shown in parentheses 
next to the appropriate species. 
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Empty Lattice 

One Event (-Nk) 

N(N- l)k 2 -N(N- 1)k 2 =N2k 2 N 2k2 

Tvo Events 

Fig. 2. Illustration of the possibte sequences of events for a one-dimensional lattice of N sites 
where each site can undergo the reaction 0 --* 1 independent of the state of its neighbors. A 
solid circle indicates a particle, while an open circle indicates a pause. The combinatorial 
factors, indicating how many similar configurations there are, are shown, as is the appropriate 
product of rate constants. 

Q{m, n} shown are [where we use {.. .} to indicate the actual sequence of 
particles (l's) and pauses (~b's)] 

Q{~b} = N,  Q{1} = N  

b{~b} = 1, b { 1 } = l  

Q{~b~b } = N  2, Q{ l~b} = N ( N -  1), 

Q{~b l}=U 2, Q { l l } = N ( N - 1 )  

b{~} :o ,  b{l~} = -1, 

b{~l}:0, b{11} : -1  

(2.18) 

Then, using (2.18) in (2.16), one again has the expansion of (2.5) for 
B ( t )  = o ( t ) :  

p(l) = kb { 1 } = k 

p~2~= k2(_b{ 10} + 2b{11 })= -k  ~ 
(2.19) 

The combinatorics given in Fig. 2 illustrate the fact that Q{m, n} depends 
on the order in which the events take place. A particle or a pause never can 
be placed on a lattice site already occupied by a previous particle, but a 
particle or a pause can be placed on a site already occupied by a pause 
(because a pause is not a real particle--but the pause combinatorics make 
a real contribution to the final result). 

Of course the point of giving the lattice-combinatorial derivation of 
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the series for the simple process of (2.6) is that this method can be easily 
used to treat cases where the particles do interact. As a simple modification 
of the model illustrated in Fig. 2, take the case where a particle cannot 
be added to a site if the nearest-neighbor site is already occupied 
(one-dimensional lattice gas with nearest-neighbor exclusion). Figure 3 
shows the analog of Fig. 2, that is, all events through n = 2, except now the 
combinatorial factors are altered to take into account the fact that one has 
nearest-neighbor exclusion. The changes from the combinatorial factors 
given in (2.18) are 

Q{l~b} = N ( N - 3 ) + N  2, b{l~b} = - 3  
(2.20) 

Q{t l}  = N ( N -  3), b{l l}  = - 3  

the difference being that instead of the N(N-1)  factor, one has N(N-3).  
For independent particles there are N ways to place the first particles and 
( N -  1 ) ways to place the second one, while with nearest-neighbor exclusion 
there are ( N - 3 )  ways to place the second particle. Using (2.20) in (2.19), 
one has 

p(1)=k ' p(2)= _3k2 (2.21) 

In a similar fashion, one can calculate higher-order terms using the 
appropriate combinatorial factors Q{m,n} (or their linear parts, the 
b{m,n)). 

We can simplify (2.16) considerably. To that end, we introduce the 
following notation. In general {m, n } means a sequence of n events, m of 
which are the addition of particles. If we want to specify some of the 
specific events, we will write, for example, {1; m, n -  2; ~b}, which indicates 
that the first event is the addition of a particle and the last event is a pause, 

CN~) 

N(N-3)k 2 -N(N-3)k 2 

One Event 

Empty Lattice 

(-Nk) 

KJ 

-N2k 2 N 2k2 

T v o  Events 

Fig. 3. Illustration of the possible sequences of events for a one-dimensional lattice of N sites 
where each site can undergo the irreversible reaction 0-*  1. This is the same picture as in 
Fig. 2, except that here there is nearest-neighbor exclusion, which alters the combinatorial 
factors and hence the coefficients p("). 
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the two separated by ( n - 2 )  events, m of which are the addition of 
particles. As another example, the sequence {~b : m, n - 1 } indicates that the 
first event is a pause followed by ( n -  1) events, m of which are the addition 
of particles. If we want to specify all of the events, we will write { l~bl~b }, etc. 

Using the above notation, we notice that all sequences that begin with 
a pause, {~b; m, n -  1 }, do not contribute to p(n)for the initial condition of 
an empty lattice. This is so because there are N ways to place the initial ~b 
and then N times that number of ways of placing whatever event follows 
(particle or pause). Thus, the combinatorial term has a factor N 2 and 
cannot contain a term linear in N; hence, it does not contribute to p(n~. In 
addition, all configurations of the form {m, n -  1; ~b} can be ignored. This 
is so because 

b{m, n -  1; ~b} : b { m ,  n -  1;1} 

i.e., with respect to the final event, the combinatorics are identical whether 
the event is a particle or a pause. The contributions of the above configura- 
tions to (2.16) are given by 

k ' [ ( m +  1 ) ( -1 )  "-(m+l)b{m, n -  1; 1} + m ( - 1 ) ' - "  b{m, n -  1;~b}] 

= k ' ( - 1 ) "  ( m + l ) b { m , n - 1 ; 1 }  (2.22) 

Note that the two terms combine to give the contribution of just the 
b{m, n -  1; 1 } term, except that the (m + 1) factor is missing. The result of 
(2.22) and the observation made previously that sequences starting with a 
pause do not contribute means that we need consider only sequences of 
events of the form {1;re, n - 2 ; 1 }  and in so doing modify (2.16) to 
suppress the factor m [because it cancels in (2.22)]. Thus, for the initial 
conditions of an empty lattice we have the results 

p~l)=kb{1} 
, - 2  (2.23) 

P (n)=kn Z ( - - 1 )  n 2-mb{1;m,n-2; 1 } (n~>2) 
m = 0  

Equations (2.23) through n = 4 read 

p(O)= 0 

p(1)=kb{1} 

p(2) = k2b{ 11 } (2.24) 

p(3~ = k3(b{ 111 } - b{ 1@1 }) 

p ~ 4 ) = k 4 ( b { l l l l } _ b { l l @ l } _ b { l @ l l }  +b{l@@l}) 
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We now show that most of the b{m, n} appearing in (2.24) can be related 
to the equilibrium bn. We first note that ({n, n} indicates n events all of 
which are the addition of particles) 

b{n, n} = b* =n! b,, (2.25) 

This result follows since b{n, n} represents the successive addition of n 
particles. The combinatorics of the number of ways of arranging n such 
events on the lattice is the same as for the equilibrium case, except that in 
the time problem the events (addition of particles) are distinguishable 
because they occur in a specific sequence in time (in the equilibrium case 
one divides by n!, since the particles are identical). The second relation one 
has is as follows (where ~b i represents i consecutive ~b,s and I s represents j 
consecutive l's) 

b{ l~b i 1 j } = (b])~ b*+l (2.26) 

This result follows because the i consecutive pauses are equivalent to 
adding a second particle i times; with respect to the 1 s sequence of events, 
the ~b i do not effect the combinatorics, and hence one has b*+~. 

Using (2.25) and (2.26), the equations of (2.24) become (recognizing 
that b* = bl = 1, since there are N ways to place the first particle on the 
lattice) 

p~o) = 0  

p(~)=k 

p(2) = k2[ -2b2]  (2.27) 

p(3)=k3[6b3-4b2] 

p(4) = k4[-24b4 _ 12b2b3 _~ 8b 3 _ b{ l l~bl } ] 

where b2, b3,  and b 4 a r e  the equilibrium b,,. The only new quantity is 
b{ ll~bl }. For higher-order terms, more and more new terms would appear. 
For example, 

p(S)=kS[b{ l l l l l }_b{ l l l~b l}_b{ l l~b l l }_b{ l~b l l l }  

+ b{ 1 l~b~bl } + b{ l~b~bl 1 } + b{ l~bl~bl } - b{ l~bq~l }] 

p(') = kS[ 120b5 - 48b2b4 + 24b22b3 - 16b 4 + 2b2b{ 1 l~bl } 

- b{lll l} - b{11 11} + b{11  1}1 

which requires the special construction of the three new kinetic terms 
b{lll~bl}, b{ll~bll}, and b{ll~b~bl}, in addition to the term b{llq~l} 
already required to c o n s t r u c t  p(4). 
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As an example of the use of (2.27), let us again take the case of 
independent particles. In that case the equilibrium canonical partition 
function is 

Q~ 
N! N ( N - 1 ) ( N - 2 ) . . . ( N - n + I )  

n!(N-n)! n! 

and bn is the linear part of Qn with respect to N, 

(2.28) 

For the special term b{ 1 lq~l } one has the combinatorial factor (notice that 
one does not divide by n !, since the events are distinguishable by sequence) 

Q{ 1 l~bl } = U(U- 1 ) ( U -  2) 2 (2.28a) 

The desired quantity is the part of Q linear in N: 

b { 1 l~bl } = - 4  (2.29) 

Using (2.28) and (2.29) in (2.27), one has 

fl(1) = k, p(2) ~_ _ k  2, ;0(3) = k 3, fl(4) = _ k  4 

and one once again has the expansion of (2.4) for B(t)= p(t). 
For the model of Fig. 3, i.e., nearest-neighbor exclusion, we quote the 

results for the equilibrium bn through n = 4: 

b1~-1,  b2 ~-- -1�89 b3= 3~, b4= - 8 2  (2.30) 

The equilibrium b3 is obtained from the following combinatorial expression: 

Q3 = 1 [ -2N(N-  5) + N(N-- 5 ) ( N -  6)] 

This is easily modified to give the combinatorial expression for {ll~bl}, 
since one simply repeats the final factor in each term and deletes the n I: 

Q { 1 l~bl } = [ 2 N ( N -  5) 2 + N(N-  5 ) ( N -  6) 2 ] 

This gives (taking the part of the above expression linear in N) 

b{ l l~b l }  = -130  (2.31) 
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Using (2.30) and (2.31) in (2.27), one has 

p(O) = 0 

p(1)= k 

p(2) = _ 3 k  2 

p(3)= l l k  3 

p(4) = _ 4 7 k  4 

To  illustrate the 
two-dimensional  lattice 

(2.32) 

utility and generality of (2.27), we treat  the 
gas on the square lattice with neares t -neighbor  

exclusion. The first four equil ibrium bn are (from Ising series (4~ (6)) 

bl = 1, b 2  = -2!2,  b 3  = 10 l ,  b 4 = - 5 2 J  

In analogy with the calculation of b{ l l~bl } for the one-dimensional  lattice 
with neares t -neighbor  exclusion, one has 

1 
Q3 = 3.T [ - 4 U ( U -  8) + 4N(N- 9) + N(N- 1 3 ) ( N -  10)] 

Q{ l l~bl } = [ 4 N ( N -  8) 2 + N(N- 9) 2 + N(N- 1 3 ) ( N -  10)23, 

b{ll~bl } = - 7 2 0  

giving 

p ( l ) =  k 

p(2) = _ 5 k  2 
(2.33) 

p(3)= 37k 3 

p(4) = _349k 4 

One can apply (2.27) to irreversible adsorpt ion  in any hard-part icle  
system, lattice gases, or particles in cont inuous  space. 

2.2. Reversible Binding in Hard-Particle Systems 

The t rea tment  of reversible binding is simply an extension of the ideas 
already presented. The basic reaction is the exchange of a particle with a 

2 The bn for the hard-particle lattice gas are obtained as a byproduct of the series for the Ising 
model. The first 13 b~ are given in ref. 5. The 14th and 15th terms are found in ref. 6. 
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reservoir where the state of a lattice site can go reversibly from 0 (vacant) 
to 1 (occupied): 

0 @ 1 (2.34) 

where k I and kb are the rate constants for the adsorption and desorption, 
respectively, of a particle. For hard particles, the possibility of the forward 
step may depend on the state of occupancy of neighboring sites. 

One now has two additional types of events: 

Event III: removal of a particle (1 ~ ) -~ +kb 
(2.35) 

Event IV: pause for removal of a particle (~b ~) -~ --kb 

where we have indicated the symbols we will use to represent these events 
(1-1 and ~b-l); the rate parameter, +kb or --kb, assigned to each event is 
also indicated. The total list of events is now [combining (2.35) and (1.9), 
(2.10), using the rate constant k r for the events in (2.10)]: 

Event I: 

Event II: 

Event III: 

Event IV: 

1 (add a particle) ~ +kf (0 ~ 1) 

~b (pause for I) ~ - k  s (0 ~ 0) 

1 1 (remove apa r t i c l e )~  +k b (1 -+0) 

~b -1 (pause for III) ~ -k~  (1 --, 1) 

(2.35a) 

The symbols used to indicate the various processes are indicated, as are the 
rate parameters (and the appropriate sign); the processes in parentheses 
indicate the actual physical change taking place the pauses do not change 
the state of the lattice, but they do contribute to p(n). 

We will now interpret the notation {m, n} to indicate n events with a 
net of m particles; the possible events are to be interpreted as any combina- 
tion of the processes listed in (2.35a). Equation (2.16) then applies to the 
reversible case with no modification. The only difference is that now there 
are many more configurations {m, n) that contribute. 

As an illustration, Fig. 4 illustrates the different possible combination 
of events through n = 2  for independent particles (the case that was 
illustrated for irreversible binding in Fig. 2). The combinatorial factors 
Q{m, n } are shown, as are the appropriate products of rate constants. The 
parts of the illustrated Q{m, n} linear in N are shown below, as is the 
construction of p(1) and p(2): 

p(O)= 0 

p(~=kf (2.36) 

o '2 '= -k - jkb 
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Empty Lattice 

k f / / / /  ~ ' f ,  ~ ~ ~ (-Nkf) 

-N2k 2 N 2k2 

(Nkfl 0 

+ : l l  . 
N(N-l)kf2 1 -Nkfkb 

2 -N(N-llkf N~tk b 

Fig. 4. Illustration of the possible sequences of events for a one-dimensional lattice of N sites 
where each site can undergo the reversible reaction 0 ~  1 independent of the states of 
neighboring sites. Particles are indicated by solid circles, while pauses are indicated by open 
circles. This scheme is the generalization of Fig. 2 to the reversible case. 

All of the specific configurations that contribute to pin) through n = 4 
for reversible bonding are shown in Table I. Also indicated is the contribu- 
tion each b{m, n} would make for the special case of hard particles. In 
constructing Table I, we are using the relation of (2.22) and an analogous 
relation for the two new type of events one has in reversible binding: 

b{m, n -  1; 1-1 } =b{m, n -  1; ~-1} 

kb[--(m + 1) b{rn, n -  1; ~b -1} + (m) b{m, n -  1; 1-~}]  

= -kbb{m, n -  1;~b 1} (2.37) 

where we have given the rate constants and signs just for the last event (the 
product of rate constants and sign for the first n -  1 events is the same in 
each case). Also left out of Table I are other configurations whose 
contribution to the p(n) will cancel, specifically, those configurations where 
the appropriate Q{m,n} have no linear term in N, e.g., {1 1-11},  
{l~bl l l } , a n d  {l~b 11 11}. 
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Using the results of Table I for the case of hard particles, one has the 
following general relations (with bl = 1): 

p(o) = 0 

p(1) = k f  

p(2) = k~ [2b2] - k f k b  (2.38) 

0 (3) =k}[6b3-4b#] + k ~ k b [ - 4 b 2 ]  + k f k ~  

p(~) = k} [ 2 4 < -  12b~b3 + 8b 3 -  b{11r 

+ k}kb[  - 24b3 + 20b 2] + k~k216b2] - k f k  3 

Table I. The Configurations of the Events Listed in (2.35a) for 
Reversible Binding That Contribute to p("~ 

n Configuration Contribution for hard particles 

1 b*kf 

l r l - b % k  

1 1 r -2b*k~-kb 
1 r 1 - ( b ~ ) = k ~  
1 r162 1 b~k~kb 
1 r 1 1 -b*k~kb 

1 1 1 ! b ' k }  
1 1 1 r _3b.k}kb 
1 1 r  - b { 1  i r  
1 1 r162 2b.k}kb 
1 1 1-1 1 2(br 
1 1 1-' r -2b*k}k~ 
1 1 r 1 -2bTk}k b 
1 1 r 1 6 2  -1 , 2 2 4b2 k}k e 
1 r  _ , , 4 b2b3k~ 
1 r 1 r 2(b~)2k)kb 
1 r 1 6 2  1 (b~')3k} 

1 r r r  -(b2*)2k}kb 
1 q)r 1 (b*)2k3zkb 
1 r 1 6 2 1 6 2  i _b~k)k 2 
1 r 1 1 -b~k}k  b 
1 r 1 6 2  , 2 2 2b2 k~k b 
1 r r 1 b*k)kb 
1r 1r162 _b~k}k 2 
l~b 1 r  , 2 2 b: k}k~ 
I r 1 r162 _b t k f k  3 

a The contribution of each configuration for the special case of hard-particle systems is also 
given. The b* are given in (2.25); b* = n! b.. For all hard-particle systems one has bl = 1. 

822/61/3-4-18 
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Of course, when k b = 0 (irreversible binding), (2.38) reduces to (2.27) with 
k = k s. One notes that there are no new factors that need to be evaluated 
than were needed to treat the case of irreversible binding. 

For independent particles, the process of (2.34) is described by the 
simple differential equation 

for which 

d P = k f ( 1 - p ) - k b p  
dt 

(2.39) 

p(")=(-1)n+lkf(kf+kb) n 1 (2.40) 

which are the same results that one gets when (2.28) and (2.29) are used 
in (2.38). 

For the case of reversible binding in the one-dimensional lattice gas 
with nearest-neighbor exclusion, the use of (2.30) and (2.31) in (2.38) gives 

p(O)=O 

p(~)=kf 

p(2)= _3k~_kfkb (2.41) 
p(3j= llk~ + 6kfk b + kfk~ 

p(4) = - 4 7 k ~ -  35k~kb- 9k~k~- ksk ~ 

The series for this reversible binding in this model are known through 
n =  15; the above results agree with those results obtained in a different 
manner (I) (setting ks=z and kb = 1). 

For the case of the two-dimensional square lattice with nearest- 
neighbor exclusion, the use of (2.32) and 2.32b) in (2.38) gives 

p(O) = 0 

p(1)=kf 

p(2)= -5k)- kfkb (2.4t) 
p(3,= 37k~- + lOk}k b + kfk 2 

p(4)= - 3 4 9 k ~ -  123k~kb- 15k~kZ-klk3b 

3. P A R T I T I O N  F U N C T I O N S  FOR K I N E T I C S  

In this section we show formally how time series for relaxation 
processes in lattice gases can be calculated using analogs of activity series. 
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Let F be a set of N consecutively numbered lattice sites. Let F ~  7, be 
a subset of n lattice sites with numbers, not necessarily consecutive, in 
ascending order. Let P(7,) be the a priori probability of finding n particles 
on the lattice with the configuration 7,. The master equation for the time 
evolution of the P(7,) is then 

dP(7.) 
dt 

~, w+(y. 1,7.)P(7._~) 
~n 1 c Yn 

- -  Z W ('~n, ~)n--1) P ( ? . )  - -  

Yn--1 ~ Yn Yn+l ~ T n  

W - - ( ^ 1 ) n ,  ~J)n+ l )  P ( ~ n )  

(3.1) 

where w+(7._1,7~) is the transition probability for the addition of a 
particle to configuration y. ~ to yield 7. and w-(7 . ,  7,, 1) is the transition 
probability for subtracting a particle from configuration 7. to yield 7.-1.  

We express the P(7.) as time series 

P(7.) = ~ P(m)(]~n) tm/t! 
m=O 

[dmP(~.)] 
P(m)(V') = L dtm J,=o (3.2) 

Taking the w's to be independent of time, substitution of the time series 
(3.2) into (3.1) yields the recursion relation 

p(m)(.ym) = E 
]'n I c Yn 

- E 
Y n - l C Y n  

- E 
Yn+ 1 ~ Yn 

+ 2 
Yn+l~Yn 

W+(~)n_l, ~)n) P (m 1)(~)n_ l) 

W-(Tn, Tn 1)p(m-1)(~/n ) 

w+(y.,Tn+l)P TM 1)(7n) 

w (7.+l,y.)P(m-n(7.+l) (3.3) 

The probability of finding n particles on the lattice in any configura- 
tion is given by 

P. = ~  P(y.) (3.4) 
Yn 
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The average density of particles per site is then 

1 ~ nPn 
n 

Writing p as a time series 

p= ~" p(m)tm/m! 
m=O 

p ( m , : [  drn~ ] 

L d-P-/,=o 

then (3.3)-(3.6) give for the p(m) 

Poland 

(3.5) 

(3.6) 

detailed balance gives 

for t < 0  
(3.8) 

for t>~O 

w + 
7n-~ ~ 7, (3.9) 

w+(~. ,,7.)/w-(~o,7~ ,)=z~K(~. ~,~.) (3.10) 

where K is the appropriate ratio of equilibrium Boltzmann factors. We 
choose to define the following activity-independent rate parameters 
consistent with (3.10): 

w+(~,.-,, ~'.)=z~ok+(~;. 1, ~.,) 
(3.11) 

w-(Tn, 7 n - l ) =  k-(Tn, ]]n-- 1) 

TO begin the recursion process, one has at t = 0 

k-(Tn,7 ,  x)e(~ ,, 7.) P(~ ,) (3.12) 

activity of the reservoir at t = 0, 

Z:Z 0 

Z= Zoo 

Then for the general reaction 

P(m)=N-'~ ~ ~ [w+(Y~-l,TJ P(m 1)(~)n !) 
n ~?n-I ~n~Yn--1 

- -  W (~)n, ~Jn 1) p(m-t)(Tn) ] ( 3 . 7 )  

To proceed with the evaluation of the p(m) as given by (3.7), we 
specifically treat lattice gases in contact with a reservoir of particles having 
activity z. For simplicity, we consider the case of a sudden jump in the 
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Using (3.11) in (3.6) yields 

P ( 1 ) = N - I ( z m - - Z O ) 2  ~ P(~  1)  2 k + ( ~ n  1 , T n )  ( 3 . 1 3 )  

/'t Ytt -- I 7n ~ 7n -- 1 

One can then use (3.13) in (3.6) to give p(2), and so on. 
We now show that the problem of evaluating p(1) as given by (3.13) 

is equivalent to the evaluation of mixture activity series in equilibrium 
statistical mechanics. For a single-component lattice gas with activity Zo, 
the grand partition function is 

~ Q  n 
.-.,~ = nZo 

" ( 3 . 1 4 )  

Q. = Z q(TJ 
7n 

where q(7.) is the Boltzmann factor for the configuration of n particles, 7,,- 
Then 

p(O)(y~) = q(7,) z ; /2  (3.15) 

Using (3.15), we can rewrite (3.13) as 

P ( l ) = ( N s  ' }~, q(Tn-i) ~, k+(Tn-l,Yn) (3.16) 
rt 7n 1 ~n ~ Tn- I 

Now the configurational canonical partition function for a lattice gas 
mixture containing one solute particle and n -  1 solvent particles is 

Q, .... 1 = ~ qll(Tn-1) ~ q ,2 (y~- l ,L)  (3.17) 
Yn-I  7n~Yn-I 

where qH and q12 are the Boltzmann factors for solvent-solvent and 
solute-solvent interactions, respectively. The sums appearing in (3.16) are 
exactly the same as those in (3.17) with q12 replaced by k +. One can then 
write (3.16) as 

n = l  

where cn is the coefficient in the Mayer double activity series for a binary 
mixture for one solute and n - 1  solvent particles with the solute-solvent 
Boltzmann factor q12(Tn 1, 7,,) replaced by the rate constant k+(Tn_ 1,7n). 

The expressions for the p(m) for m > 1, although straightforward to 
obtain, become quite complicated as m increases. Since these expressions 
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often can be simplified for specific models, we will not give general expres- 
sions for p(2), etc., but rather, in the following section, show the results 
through p(2) for lattice gases with nearest-neighbor interactions only. 

4. LATTICE GASES W I T H  N E A R E S T - N E I G H B O R  
I N T E R A C T I O N S  

In this section we quote the results of applying the approach of the 
preceding section to lattice gases (any dimension, any coordination 
number) with nearest-neighbor interactions only. We let x be the nearest- 
neighbor interparticle Boltzmann factor 

x = exp( -e /kT)  (4.1) 

where e is the interparticle interaction energy, and we let x" be the rate 
constant for breaking n nearest-neighbor interactions (bonds); by taking 
the form ~c n we assume (2) that the activation energy for simultaneously 
breaking n nearest-neighbor bonds is linear in n. In terms of the parameters 
x and ~c one then has 

p(O)= ~, nbn(x)z~) (4.2) 
n ~ l  

~o- 1 ~ cn(x;xtc)z~ (4.3) 
n = l  

n ~ l  

- ( x ~ - l ) z ~  L dn(x;xtc)z;+ L c,(x;x~c)zg 
n = l  n = l  

-x~c (1 -K)  ~ d,(x;x~c)z; +1] (4.4) 

The quantity bn(x) is the standard Mayer coefficient for n identical 
particles. As discussed in the previous section, cn(x; u) is the Mayer 
coefficient for a mixture of one solute particle and n - 1 solvent particles, 
x and u being respectively, the solvent-solvent and solvent-solute 
Boltzmann factors. The quantity d,(x; u) is the Mayer coefficient for a 
single dimer solute particle (the dimer occupying any two nearest-neighbor 
lattice sites) and n -  1 solvent particles, x and u again being respectively 
nearest-neighbor solvent-solvent and solute-solvent Boltzmann factors. 
From the point of view of counting configurations, the dimer is asymmetric 
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(thus, dl = 4  for the plane-square lattice), although both particles in the 
dimer have the same solvent-solute interaction parameter  u (the dimer is 
asymmetric because it represents two events that are distinguished by their 
sequence in time). Figure 5 illustrates sample particle configurations and 
the assignment of Boltzmann factors involved in the evaluation of the bn, 
cn, and dn. The appropriate Mayer coefficients are the part  of the 
appropriate canonical configurational partition function linear in N (the 
number of lattice sites). In the Appendix we give some of the cn and d, for 
the square planar lattice obtained using the technique of Springgate and 
Poland(3); the beginning terms for the one-dimensional and three- 
dimensional cubic lattices are also given. 

( 

C8) 

( )  _ 

( ) I< ," . ,  d 

'~" ~ 
il 

(b) 

Fig. 5. (a) A sample particle configuration contributing to the coefficient cn; the solid 
particle represents the solute. The quantities x and u are respectively the nearest-neighbor 
Boltzmann factors for solvent-solvent and solvent-solute interactions. (b) A sample particle 
configuration contributing to the coefficient d,; the solid particle represents a dimer solute 
particle. The quantities x and u are respectively the nearest-neighbor Boltzmann factors for 
solvent-solvent and solvent-solute interactions. 
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Equations (4.2)-(4.4) are the explicit realization for nearest-neighbor 
lattice gases of the qualitative ideas presented in the introduction: p(i) 
involves all configurations of one "solute particle" or one event, p(2) 
involves two events, and so on. In nearest-neighbor lattice gases one has 
the simplification that the double events that occur in the final formula are 
nearest-neighbor (resulting in the solute particle being a dimer). 

Using the equilibrium relation, (4.2), between z and p, one can write 
(4.3) and (4.4) as series in the initial density, 

C~n PO-- an /Y0 
n = 0  n = l  

p(2) = _p(l) Zoo t-'n ~'0 + ~'n t-'0J 
n = 0  n = 0  

(4.5) 

The coefficients in these series are given in the Appendix for the Ising 
model on the plane-square lattice for the general case of nearest-neighbor 
attractive interactions and the special case of nearest-neighbor exclusion. 

5. L IM IT  OF I N T E R N A L  E Q U I L I B R A T I O N  

Equation (3.18) gives a general relation for the initial rate of change 
of density in a cooperative system subject to the initial perturbation 
described by (3.8): 

- •  
t = O  n = l  

Equation (5.1) applies to both discrete (lattice) and continuous space 
models, although we have given in detail the derivation only for lattice 
models. The relation between P0 and z0 given in (1.9) can be inverted to 
give Zo as a function of Po, 

Using (5.2) in (5.1) gives 

Zo = ~ anp; (5.2) 
// 

-- i 
- ~  t=O n = 0  

Equation (5.3) gives the initial rate of change of the density in terms of the 
initial equilibrium density. If as the density varies with time, the inter- 
mediate particle configurations have the same probability as for a system 
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at equilibrium at the same density, then (5.3) will be a general differential 
equation for the rate of change of the density, i.e., 

@(t) 
~ ,p ( t ) "  (5.4) 

dt , = o 

Equation (5.4) will hold if the rate of internal diffusion is large compared 
with the rate of exchange of particles with the reservoir, that is, the limit 
of internal equilibration. In this limit the density dependence of dp/dt  is 
given solely in terms of the quantities b, and c, [used to calculate the ~n 
of (5.4)], which are obtained using the techniques of equilibrium statistical 
mechanics. 

6. SPECIAL CASES 

From detailed balance and the definitions (3.10) and (3.11) one has 
the relation 

k + ( 7 . - ~ , 7 . ) / k  (7, ,7 ,  , )=K(? ' .  1,7.) (6.1) 

which gives the condition that the system will evolve with time to the 
correct final equilibrium state. Equation (6.l) can be used to eliminate k -  
in favor of k + and K. This still leaves the choice of k -  arbitrary if the only 
condition imposed is that the system relax to the correct final equilibrium 
state. For special choices of k + the task of obtaining a series for p( t )  

simplifies greatly. 
The first special case is the choice 

k + = K  
(6.2) 

k =1 

The condition k = i implies that the activation energy for breaking bonds 
to remove particles is zero. This obviously is an unrealistic limit for 
particles with attractive interactions, but it is the limit of interest for hard 
particles, where the only cooperative effect is hat of excluded volume. If the 
relations of (6.2) hold, then k § is simply the equilibrium Boltzmann factor 
between particles at equilibrium. Since the quantity c, is the Mayer 
coefficient for a mixture of one solute and n -  1 solvent particles, when the 
solute-solvent interaction is the same as the solvent-solvent interaction, 
the solute becomes a solvent particle with a label. Thus, c, can be obtained 
from the Mayer coefficient for n solvent particles, the fact that one particle 
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is labeled being introduced by a factor n (the number of ways to pick the 
labeled particle from n particles). One has then 

c, = nb , (6.3) 

and 

• c , z ;=  ~ nbnz~=po (6.4) 
n = l  n ~ l  

For this special case, Eq. (5.4) for dp/dt in the limit of internal equilibra- 
tion becomes simply 

dt 

The factor z in (6.5) can be converted to a function of p using (1.9) and 
(5.2). Note that in this case the time dependence of p can be obtained using 
only he b, from equilibrium statistical mechanics. Equation (6.5) applies 
both to lattice and continuous space models. Equation (6.5) is easily 
modified to treat the case of irreversible binding with internal equilibration 
(that is, once bound, the particles do not leave the lattice, but they do 
move rapidly about on the surface). In that case one has 

d •  zoc 
- - = - - p  (6.5a) 
dt z 

For the initial condition p(~ we have seen in (2.38) that the p ~  
through n = 3 are given solely in terms of the equilibrium b,, even when the 
rate of internal diffusion is zero. Equation (6.5) gives the same results as 
(2.38) through p(3~ (the reasons for this are explored in more detail 
elsewhere(l~). Beginning with the p(4) term, there begin to be differences in 
the coefficients pc,)between the limit of internal equilibration, (6.5), and 
the limit of no internal diffusion, (2.38). Taking kf=zoo and kb= 1, the 
coefficient /)(4) from (6.5) is in general for hard particles 

p(4)= k} (24b 4 _ 60bzb3 + 40b 3) + k)kb(ZOb 2 _ 24b3 ) 

+ k~k~(6b2)-  k f k  3 (6.6) 

The case of irreversible binding with internal equilibration is given by 
setting ko = 0 in (6.6). For the one-dimensional and two-dimensional lattice 
gases with nearest-neighbor exclusion treated in (2.41) and (2.42), respec- 
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tively, in the limit of zero internal diffusion, we have the comparisons (only 
the p/4) terms differ), taking k~ = k and kb = 1, for one dimension, 

p(41= _47k 4_  35k 3_ 9k 2 _ k  

p(4 )=  _ 4 5 k  4 - 35k 3 _ 9k 2 - k  

(no internal diffusion) 

(internal equilibration) 
(6.7a) 

and for two dimensions, 

p(41= _349k 4 _  123k 3_  15k 2 _ k  

p(4)=  _329k 4 _ 123k 3 _ 15k 2 _ k 

(no internal diffusion) 

(internal equilibration) 
(6.7b) 

One sees that the differences in the two limits are very minor; thus, it is not 
surprising that the limit of internal equilibration serves as a very good 
approximation to the case of no internal diffusion (except for the very last 
stages of the relaxation process(~)). 

The second special case is 

k + = l  

k = K  i (6.8) 

In this case the activation energy for adding a particle is zero, while the 
activation energy for breaking a bond is the negative of the interparticle 
interaction energy. Since k + = 1, the canonical configurational partition for 
adding a single solute particle with k + =  1 to n - 1  solvent particles is 
simply Q1, , - I  = I N - ( n - 1 ) ]  Q , -1  if there is no excluded-volume effect 
beyond a single lattice site [with k + = 1, the solute particle is a noninter- 
acting particle which can be placed anywhere on the N -  (n - 1) remaining 
sites with the same, zero, energy]. Thus, 

c n = - ( n - 1 ) b n  ~ (6.9) 

(where C 1 ~--- 1) and 

c,z~ = zo- Zo ~ nbnz~= zo(1- po) 
n - - I  n = l  

(6.10) 

With (6.10) one has 

=(z~o-z)(1-p) (6.11) 
dt 

in the limit of internal equilibration. Again, (1.9) and (5.2) can be used to 
replace z by p in (6.11), requiring knowledge of the b, only. 
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We note that for a lattice gas of independent particles (the only restric- 
tion being that only one particle can occupy a given lattice site) one has 
z = p / ( 1 - p )  and (6.5) and (6.11) both reduce to 

@ 
- z ~ ( 1 - p ) - p  (6.12) 

dt 

7. PROPERTIES OF THE L IMIT  OF INTERNAL EQUIL IBRATION 

Equation (5.4) gives an expression for dp/dt in terms of a series in p(t), 
the expansion coefficients ~,, being obtained from the quantities b, and cn 
in the limit of internal equilibration. In this section we explore some of the 
properties of this limit. Kawasaki, (7~ using Glauber's reduced master 
equation (8) (used to give an exact solution for relaxation in the one- 
dimensional Ising model for a special choice of transition probabilities(2)), 
has treated spin diffusion in the Ising model near the critical point assuming 
instantaneous local equilibrium. He showed that under these conditions the 
diffusion constant goes to zero at the critical point as the inverse of the 
static magnetic susceptibility and that this was an upper bound for the case 
when one does not have instantaneous local equilibrium. We will use the 
virial series approach developed here to give the analogous results for 
lattice gases. 

Writing (5.4) as an activity series, one has 3 

d P = ( z ~ - z )  Zc~z~ ~ (7.1) 
dt 

n 

Defining the following deviations from the final equilibrium state 

Ap = p~ - p (7.2) 
~ Z  ~ Z o o - - Z  

then if the final state is not a singular point (i.e., if the final density is not 
the density of a phase transition), one can expand all functions of z as a 
series in Ap, 

A z = a  Ap + b(Ap) 2+ ... 
(7.3) 

~ c n z "  I = A + B A p +  ... 
n 

3 The coefficients c, contain both equilibrium Boltzmann factors and rate constants. For a 
similar approach to the treatment of the kinetics of conformational transitions in bioplymers 
see ref. 9. 
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where 

As Ap--*O ( t ~ ) ,  

a = { S z )  
\ ~ p )  . . . .  

A= ~ c , z ~  1 
n 

(7.4) 

dAp Ap (7.5) 
dt z 

Using (7.3) and (7.4) in (7.5) and the relation 

z = z c o  /7 

one obtains the following relation for the relaxation time: 

v : [ ~ n 2 b , ( x ) z : ] / [ ~ c n ( x ; x K , z ~ ]  (7.7, 

The sum in the numerator of (7.7) is proportional to the isothermal 
compressibility Kr,  

n2 bnz~ = p2 Kv/~ (7.8) 
n 

where/~ = 1/kT. One notes that the rate parameters in (7.7) are contained 
in the c, (through the ~c factors). 

As one approaches the final density characteristic of a second-order 
transition (critical point), then K r ~  oo and thus in the limit of internal 
equilibration v(T) ~ oo as KT(T) ~ oo. In the magnet the relaxation time 

KawasaK1. varies as the static susceptibility, as shown by --(7) 
When the final density is a singular point the expansions of (7.3) 

cannot be used. From the equilibrium theory of critical points one has 
instead the following variation of Az with Ap: 

Az ~ (Ap) ~ (7.9) 

[In the magnet, the analog of (7.9) is the variation of the magnetic field H 
with magnetization M: H ~  M~.] Using (7.9), (7.1) becomes 

dAp 
dt (AP)~ (7.10) 
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giving 

where 

A p ~ t  v (7.1t) 

1 
v = (7.12) 

6 - 1  

The quantity 6 is one of the least well characterized critical exponents. 
Its value is known exactly only in mean field theory; good estimates are 
available from analysis of series expansions for the two- and three- 
dimensional Ising models. The values of 6 and v are given for several 
models in Table II. 

For some hard-core lattice gases, such as the two-dimensional lattice 
gas with nearest-neighbor exclusion, analysis of series expansions (~~ 
indicates that the singularity at the second-order transition that occurs in 
these systems is logarithmic, i.e., 

From (7.14) 

o r  

K T ~  6~p/c3z ~ --ln Az (7.13) 

Ap ~ - A z  In Az (7.14) 

d A p  d A z  
= - ( In  Az)  Az  (7.t5) 

dt dt 

(In Az)  z ~ t 
(7.16) 

In Az ~ - x ~  

Using (7.16) in (7.14) gives the interesting time dependence 

Ap ~ x / t  exp ( -  x/~) (7.17) 

Thus, when the final density is the critical density, we can obtain the 
specific form of the long-time nonexponential behavior in the limit of 
internal equilibration. We turn now the question of the relation of the limit 

Table II. Values of the Critical Exponent 6 and the 
Relaxation Parameter  v of  (6 .23)  for Various Models" 

Model 6 v 

Mean field approximation 3 1/2 
2D Ising 15 1/14 
3D Ising 5 1/4 

a The values of 6 are taken from ref. 13. The mean field values apply 
both to the 2D and 3D Ising models. 
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of internal equilibration to the opposite limit where internal diffusion is not 
allowed. 

Equation (3.1) gives the general master equation for a lattice system 
with no internal diffusion, that is, the only transitions included are those 
that increase or decrease the number of particles. Denoting the transition 
probabilities of Eq. (3.1) as %+ and w2 representing the exchange of 
particles with a reservoir, and introducing transition probabilities wd for 
internal diffusion, we obtain the general master equation governing the 
time evolution of the probability of a lattice configuration 7, where both 
exchange and internal diffusion are included: 

dp(7o) 
dt E + W e  (Tn 1, 7 n )  P(Tn-l) 

y n - i C T n  

- ~ wT(v.,Y.-1)P(7.)- Z 
7n ICOn 7n+l~Tn 

+ Z wT(v.+,,7.)P(7.+~) 
7n+l ~Yn 

We+(])n ,  ~)n+ 1)P(Tn) 

Yn # ?n 7~ # 7n 

The factor r multiplying the terms describing internal diffusion can be 
thought of as a charging parameter with which we can turn internal 
diffusion on and off. 

To understand the influence of internal diffusion, it is convenient to 
express the problem in matrix notation. To this end, we introduce the 
vector p, whose general element is the probability of the 7~th lattice 
configuration, P(7.), and the matrices We and Wd, 

wo = [g(Tm, 7.)] 

g(7._1, 7.)= -w+(7. ,, 7.) 

g(7.+1, 7~ = -w7(7.+~, 7.) 

g(7.,7.) = E We(7.+,,~~ 
~n I c Yn 

g(7.+m, 7.) = 0 (m>  1, m <  --1) 

w .  = [ h ( / ,  7 . ) ]  

h(72, 7.)= -wd(7;, 7.) 

h(7., 7.)= E wd(7., 72) 
Yn ~ Yn 

h,(7", 7.) = 0 (m#n) 

Z w+(7., 7.+1) 
7n+lDTn 

(7.19) 
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In terms of the quantities p, We, and Wd, (7.18) can be written 

dp 
- pW (7.20) 

dt 

where 

W = We + rWd (7.21) 

Neither We nor W d is symmetric. However, Kawasaki (7~ has shown 
that the following matrices are symmetric: 

W,e _~ p -  1/2Wep1/2 

W~ --- P -  l/2Wep1/2 (7.22) 

where P is a diagonal matrix, the diagonal elements being P(Tn). Then 

W = PI /2W'P-~ /2  

W' = W'e + rW~ 
(7.23) 

Since the transformations of (7.22) are orthogonal, the eigenvalues of W' 
are the same as those of W. The eigenvalues of W'e, W~, and W' are 
necessarily nonnegative (otherwise p ~ ~ as t ~ ~ ) .  Also, the smallest 
eigenvalue must be zero to give the steady-state limit. Let 2k(W) denote the 
eigenvalues of a general matrix W. Then, since W'e and W~ are symmetric 
nonnegative-definite matrices, it follows that (11~ 

2k(W'~ + rW~) ~> 2k(W') (7.24) 

for all k. Thus, as we turn on the influence of internal diffusion by increasing 
r from zero, all of the eigenvalues increase, i.e., all of the eigenvalues are 
monotonically increasing functions of r. 

Let 20(r) be the smallest nonzero eigenvalue. Then, as t ~ m, 

Ap ~ e  ;~o(r)t 

e - t / z  

1 
r = (7.25) 

2o(r) 

Thus, when internal diffusion is included, the final relaxation rate is faster 
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than when there is no internal diffusion. 4 Since all of the eigenvalues 
become larger as r is increased, one might conclude that 

Ap(t, r > O) < Ap(t, r = 0) (7.26) 

when the initial and final states are the same, that is, that when internal 
diffusion is included p relaxes to its final value with a faster rate at all 
times. Although this is generally the case in the numerical examples we 
have studied, it is not true in all cases, since Ap has the general form 

Ap= ~ Ak e ~kt (7.27) 
k 

and it is not necessarily so that 

Ak(r > O) < Ak(r = 0) (7.28) 

An example where the inequality of (7.26) does not hold is the one- 
dimensional lattice gas with nearest-neighbor attractive interactions with 
the transition probabilities given by (6.8). 

The limit of internal equilibration is simply the limit r --* o% in which 
case 20(oo) - 1 = ~  is given by (7.7). [This limit exists since the internal 
diffusion reactions in (7.18) do not alter the net density directly; they do 
alter the P(Tn) for fixed n and thereby indirectly influence transitions to 
7 , -1  and Yn+l which of course do alter the density.] Thus, the limit of 
internal equilibration gives an upper bound to the rate of relaxation at 
t--* oo; in most cases it will represent an upper bound for all t. 

In the limit of internal equilibration, if the final density is not a 
singular point (not a phase transition density), then one can write (5.4) as 
an expansion about P~o (using Ap = p ~ -  p), giving 

dAp 
= a 1 Ap + az(Ap) 2 + ... 

dt 

= a 1 3 p (  l+a2Ap+al " " )  

= a~ Ap F(Ap) (7.29) 

where a~ = -1 /~  and the last equality defines F(Ap). If F(3p)-~ is analytic 
in Ap, then (7.29) can be integrated term by term and expressed in the form 

~ , ( A p ) "  = e '/" (7.30) 
n = l  

4 At constant spin (unlike the exchange process considered here, where the net density 
changes) Kawasaki 17) has shown that the assumption of local eqilibrium gives an upper 
bound for the diffusion of spins. Also see ref. 12. 

822/61/3-4-19 
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Inversion of the series gives 

Ap= ~ An(e-t/~)" (7.31) 
n = l  

Thus, in the limit of internal equilibration the eigenvalue spectrum is 
simply 2 , ( r =  oc)=n/~, z given by (7.7). 

Finally, we note that  in the limit of internal equilibration, (5.4) can be 
written as 

~t = f(p, p~) (7.32) 

where f (p ,p~)  is independent  of the initial state. Thus, dp/dt at a 
particular density is the same whether the system starts out  at or  passes 
through that  density as the system relaxes from the initial to the final state. 
This means that  for a given final state p ~ ,  there is a universal relaxation 
curve p(t). If the assumption of  internal equilibration does not  hold, 
Eq. (5.4) still gives the correct first derivative at t = 0. Thus, in the general 
case the relaxation starts out, from an arbitrary initial density, tangent to 
the universal relaxation curve, but  departs from it at longer times. 

APPENDIX 

In this Appendix we give the Mayer  coefficients c,(x, u) and d,(x, u) 
discussed in Section 4. The interaction parameters x and u are illustrated 
in Fig. 5. Below we give the c,  th rough  n = 7 and the d n through n = 4 for 
the plane-square lattice; the coefficients were determined using the technique 
of Springgate and Po landJ  3) 

c 1 = 1 ,  c2=  - 5  + 4 u ,  c3=(31-16x)+(-32+12x)u+6u 2 

c4 = ( - 2 0 9  + 236x - 62x 2) + (236 - 216x + 40x2) u 

+ ( - 62 + 28x + 4x 2) u 2 + 4u 3 

c5 = (1476 - 2616x + 1450x 2 - 228x 3 - 12x 4) 

+ ( -  1744 + 2 6 5 6 x -  1192x 2 + 132x 3 + 8x4)u 

+ (524 - 532x + 74x 2 + 24x3)u 2 + ( - 4 8  + 20x + 8x2)u 3 + u 4 

c6 = ( - 10,739 + 26,080x - 22,496x 2 + 7748x 3 - 607x 4 - 112x s) 

+ ( - 13,040 - 28,160x + 20,904x 2 - 5840x 3 + 272x 4 + 64xS)u 

+ ( - 4 2 0 8  + 6 8 6 0 x -  3022x 2 + 36x 3 + 116x 4 + 8xS)u 2 

+ (444-424x-20x2 + 56x3 +4x4)u3 + ( - 1 3 + 4 x  +4x2)u 4 (A.1) 
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C 7 = ( 7 9 , 7 8 0 -  246,640x + 291,234x 2 -  158,732x 3 

I n  

mode l :  

c 1 = 1 ,  c 2 =  - 3  + 2u, c 3 = ( l O - 4 x ) + ( - 8 + 2 x ) u + u  2 

d~ = 2, d2 = - 8  + 4u 

as well as for the t h r e e - d i m e n s i o n a l  I s ing  m o d e l  o n  the  cubic  latt ice:  

C l = l ,  c2~-- - 7  + 6u, c 3 = ( 6 4 - 3 6 x ) + ( - 7 2 + 3 0 x ) u + 1 5 u  2 
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+ 35,424x 4 - 80x 5 _ 644x  6 - 32x 7) 

+ ( - 9 8 , 6 5 6  + 277,272x - 291,440x 2 

+ 136,932x 3 - 24,392x 4 - 568x 5 + 328x 6 + 20x7) u 

+ (33,272 - 75,524x + 56,908x 2 - 13,380x 3 - 1348x 4 + 416x 5 + 76x 6) u 2 

+ ( - 3 7 8 4  + 5872x - 1696x 2 - 800x 3 + 216x 4 + 52xS)u 3 

+ (127 - 100x - 42x 2 + 24x 3 + 6 x 4 ) u  4 

d l =  4, d2 = - 3 2  + 24u 

d3 = (236 - 92x)  + ( - 248 + 56x) u + (52 + 8x) u 2 
(A.2) 

d4 = ( - 1744 + 1608x - 344x z) + (2096x - 1408x + 176xZ)u 

+ ( - 6 4 8  + 120x + 48x2)u  z + (48 + 32x )u  3 

add i t ion ,  we give the  first few te rms  for the o n e - d i m e n s i o n a l  I s ing  

(A.3) 

(A.4) 
dl = 6, d2 = - 7 2  + 60u 

F o r  the  lat t ice gas o n  the squa re  lat t ice wi th  n e a r e s t - n e i g h b o r  

exc lus ion  one  has en = nbn; the b~ are k n o w n  as a b y p r o d u c t  of the Is ing  
series(4 6) a n d  are k n o w n  t h r o u g h  n =  15. W e  have d e t e r m i n e d  the dn 

t h r o u g h  n = 7, u s ing  the t e ch n i q u e  of Spr ingga te  a n d  Poland~3~: 

C 1 = 1  

C 2 = - -5  

c 3 = 31 

c4 = - 2 0 9  

c5 = 1476 

c6 = - 1 0 , 7 3 9  

c7 = 79,780 
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c8 = -601 ,905  

c 9 = 4,595,485 

Clo = -35 ,419 ,710  

Cll = 275,109,858 

c~2 = -2 ,150,537,435 

c13 = 16,901,814,190 

c14 = -133,452,123,796 

c15 = 1,057,920,031,536 

dl = 4  

Below we give the series 

densi ty  Po for the p lane-square  

~Co+ ~ = 1 

~ + ) =  

~ + )  = 

~ +  ) __. 

~ i  + ) = 

0~ + ) 

( A . 5 )  

d2 = - 3 2  

d3 = 236 

d 4 = - 1 7 4 4  (A.6) 

d5 = 13,040 

d6 = - 9 8 , 6 5 6  

d 7 = 754,080 

for p{1) and p(2) as functions of the init ial  
Is ing model  (lett ing xx  = y):  

-5+4y 

(6 - 12y + @2) + x(4 - 4y) 

(6 - 8y - 2y 2 + 4y 3) + x( - 12 + 32y - 202 '2) + x2( - 4  + @2) 

( - 1 + 16y - 28y 2 + 12y 3 + y4) q_ x(  - -40  q- 60y  q-- 8y 2 - -  28y 3) 

+ x2(66 - 136y + 62y 2 + 8y 3) 

+ x3( - 28 + 52y - 24y z) + x4(8 - 8y) 

( --  19 + 64y --  64y 2 + 12y 3 + 7y 4) 

+ x ( - 2 4 -  112y + 268y z -  t20y 3 -  12y 4) 

+ x2(282 - 272y - 194y 2 + 180y 3 + 4y 4) 

+ x3( - 452 + 592y - 68y:  - 72y 3) 

+ x4(284 - 332y + 44y 2 + @3) + xS( - 7 2  + 64y + 8y z) 

(A.7) 
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~o ~) =0 

0C]~) = 1 

G ~ = 4 y + 4 x  

:~(3- ) = (8y + 6y 2) + x(  - 8 - 20y)  + 14x 2 

:~(4-) = (8y + 28y 2 + 4 9 )  + x(  - 8 - 68y - 4 4 y  2) 

+ x2(40 + 72)' + @2)  _ 32x 3 _ 4x  4 

c~ - )  = ( - 16y + 76y 2 + 32y 3 + y4) q_ X(16 --  48y - 275y 2 - 44y 3) 

+ x2( - -28  + 216y + 246y 2 + 8y 3) + x3(28 --  132y --  40y 2) 

+ x4( - -71  --  24y)  --  56x 5 

F o r  the  s ame  la t t i ce  gas  wi th  n e a r e s t - n e i g h b o r  exc lus ion  one  has  

~(o + ) = 1 

~+~= -5  

~+~=6 

~+ ~ = 6 

ct(4 +~ = - 1  

e ~ + ) =  - 1 9  

c~(6 + ) = - 4 2  

~ + ) =  - 2 6  

:r = 1 5 0  

~9 + ) = 626 

~]~-) = 1066 

~]~)  = - 6 9 0  

(+) - 9 7 3 0  0~12 = 

(A.8)  

(A.9)  

(n~>2) 

(A.10) 
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F o r  the  p l a n e - s q u a r e  I s ing  m o d e l  in  t he  l imi t  of  i n t e r n a l  e q u i l i b r a t i o n  o n e  

h a s  

fi~+ ) = 5 - -  4xK 

f l ~ + ) =  - 1 2 +  2 4 x ~  - 12x2K 2 - 8x  + 8x2K 

fl~+) = - 1 8  + 2 4 x ~  + 6x2K 2 - 12k3~ 3 + 36x  

- 96X2K + 60k3~  2 + 12x 2 -  12x4K 2 
(A.11)  

f l ~ + ) =  4 - 6 4 x ~  + 112x2~ 2 -  4 8 x 3 ~  3 -  4x4~  4 

+ 160x - 2 4 0 x 2 ~  - 32x3K 2 

+ 120x4~  3 _ 2 6 4 x  2 + 544x3K - 2 4 8 x 4 ~  2 _ 32xSn  3 + l l 2 x  3 

- 208x4K + 9 6 x S ~  2 _ 4 0 x  4 + 40xSK 

~ - ~ =  - 8 x +  8xK 

f l ~ - ) =  24xK + 18x2~ 2 -  2 4 x -  60x2~  + 4 2 x  2 (A.12)  

f i ~ - ) =  32x~  + l12xZK 2 + 16x3~ 3 - 32x  

- 2 7 2 x 2 ~  - 176x3K 2 + 160x  2 

+ 288X3K + 16X4K 2 -  128X 3 --  16X 4 

I n  t h e  l i m i t  o f  n o  i n t e r n a l  d i f f u s i o n  t h e  s a m e  m o d e l  g i v e s  

fl~+ ~ = 5 - 4x~ 

f l ] + ) =  - 1 2 +  1 6 x ~ - 4 x R K  2 

f l ~ + ) =  - -8  + 2X + 8 X ~ - -  40X2K + 6X2K 2 + 28X3K 2 -  12X3K 3 

_ 8X4~ 3 + 6X4K 4 

f l ~ + ) =  16 + 2 0 x - - 4 0 x ~  - 4 0 x  2 - 56x2~  + 56x2K 2 + 104x 3 + 56x3~  2 

- -  8 0 X 3 K 3 - - 1 0 0 X 4 K  2 + 68X4K 4 + 32x5~  3 _ 2 0 x 5 ~  4 --  2 4 x 5 ~  5 

+ 4X6g 4 + 4X6g 6 

(A.13) 

fl(o ) = 1  

/~-~ = - 8 x ~  + 8x~ 2 

fl~2 ) = - 16x~c + 16xtc 2 + 20x2K - 18x21r 2 - 8x2~r 3 + 6x2~  4 
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fl~ ) =  - - 1 6 x K +  16x~ 2 + 6 4 x 2 ~ - - 7 6 x a K  2 

_ 16xRK 3 + 28xRK 4 _ 56xfK 

+ 100X3K 2 --  4 0 X 3 g  3 + 16X3K 4 --  24x3~ s 

+ 4x3g  6 -  4X4K 2 _  8X4K 3 + 12xag 4 
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(A.14)  

F o r  the  s ame  m o d e l  in  the  l imi t  of  n e a r e s t - n e i g h b o r  exc lus ion  one  has  in 
the l imi t  of  i n t e r n a l  e q u i l i b r a t i o n  

f(o + ) = 5, B(o - ) = 1 

f l ] + ) =  - 1 2 ,  fl(~-) = 0, ( n ~ > l )  

= - 1 8  

f i ~ + ) = 4  

fl(4 + ) = 95 

f~+)  = 252 

(A.15)  

F o r  the  s ame  m o d e l  in the  l imi t  of  ze ro  i n t e r n a l  d i f fus ion one  has  

f(0 + ) = 5, 

f ~ + ) =  - 1 2 ,  

- 8  

f i ~ + ) =  16 

fi(4 + ) = 64 

f~+)  = 96 

f ( o - ) =  1 

f(. ) = 0  ( n ~ > l )  

(A.16)  

F o r  the  I s ing  m o d e l  in one  d i m e n s i o n  one  has  in the  l imi t  of  i n t e rna l  
e q u i l i b r a t i o n  

fi(o + ) = 3 - 2 x x  

fl]+ ) = - 2  - 4x  + 4xtc + 4x21c - 2x2x  2 

f(o ) = 1  

f~ ) = - 4 x + 4 x K  

(A.17)  
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For  the same model  in the limit of zero internal diffusion one has 

fl(o + ) = 3 - 2x~c 

/3]+ ) = - 2  + 2x2~c 2 
(A.18) 

fl] ) =  -4x~c + 4x~c 2 

For  the three-dimensional Ising model  on the cubic lattice in the limit 
o f  internal equilibration one has 

fl(o + ) = 7 - 6x~ 

fl~+ ) = - 3 0  - 12x + 60x~c + 12x2~c - 30x2/r 2 
(A.19) 

fl(0-)= 1 

f l~- )=  - 1 2 x +  12xx 

For  the same model in the limit of zero internal diffusion one has 

fl(o + ) = 7 - 6 x ~ :  

fl~+) = - 3 0  + 48x~c - 18x2~: 2 
(A.20) 

1 

/~]-) = - 1 2 x x  + 12xx 2 
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